
Abstract. We propose variational and nonvariational
methods based on the superposition of nonorthogonal
Slater determinants. Properties of the reference func-
tions are discussed. In the nonorthogonal con®guration
interaction method, all the excited con®gurations of
multiple determinants are integrated into a variational
space. An e�cient way to manipulate matrix elements
over determinants of distinct vacuums is presented by
introducing similarity transformed operator and bracket
transformations. The method enables us to map a matrix
multiplication in the nonorthogonal problem to an
orthogonal one, and thus maintains a fundamental
scaling property along with the amount of data pro-
cessed in the corresponding orthogonal con®guration
interaction method. Furthermore, we discuss a coupled-
cluster theory employing a vacuum-dependent wave
operator, which is entirely size consistent as well as
core extensive. These methods are applied to
H2O� nHe�n � 0ÿ2� and a single-bond dissociation
of the HF molecule, compared with conventional
methods including full and multireference con®guration
interaction methods.
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1 Introduction

Ab initio molecular orbital (MO) methods have been
enjoying increasing popularity owing to their wide
applicability and reliability. Single reference (SR) meth-
ods mostly based on the Hartree-Fock (HF) orbitals
have become established for predicting electronic struc-

tures, especially around equilibrium bond distances.
Descriptions of bond dissociations and of excited states
with chemical accuracy require multireference (MR)
approaches usually based on the multicon®guration self-
consistent ®eld (MCSCF) method. The multireference
con®guration interaction (MRCI) method is conceptu-
ally straightforward and has been the most popular tool
for such purposes. However, even with this kind of
method, it is laborious to generate ¯exible as well as
competent computer codes capable of treating important
excitations such as semi-internal ones. Full valence
complete active space (CAS) [1] has been used as a
conventional model to treat potential energy surfaces
of ground and valence excited states. However, the
Rydberg series generally exists in the energy range and it
is nontrivial to choose model spaces in an optimal way.
The size of the active space and accordingly the
subsequent MRCI length immediately increase with
numbers of active orbitals. Furthermore, besides the
scaling property of the MRCI method, it su�ers from a
lack of proper extensivity with respect to the number of
electrons. This makes descriptions of large systems
inadequate.

SR many-body perturbation (MBPT) theories and
their resemblance to coupled-cluster (CC) methods [2, 3]
are the most widely used electron correlation proce-
dures. Some of these methods feature size consistency,
viz. a numerically proper description of a fragmentation,
or a related terminology size extensivity, viz. an explicit
extensivity ensured by connectedness of equations to
justify an arbitrary fragmentation. It is nontrivial to
extend such methods to MR cases. Mostly on the basis
of the Bloch wave operator equation in complete model
spaces (CMS), MR-MBPT [4] and MRCC approaches
[5±8] have been investigated by many authors for treat-
ing quasi-degenerate states. More recently, size-extensive
MRCC methods for incomplete model spaces (IMS)
have been developed using the Fock [9] and the Hilbert
space approaches [10]. Despite these theoretical devel-
opments, it was not until quite recently that even the
perturbational approaches started to be used routinely
in practical applications. One of the main reasons is that
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there has been no systematic way to avoid intruder state
problems maintaining size extensivity. In most of the
perturbational methods which are now readily available
in quantum chemistry codes [11±14], it is di�cult to
maintain size extensivity. Recently, Heully et al. ana-
lyzed the origin of the size-inconsistency error in the
second-order state-speci®c e�ective Hamiltonian method
[15]. However, a more general and rigorous investigation
is one of the most important subjects in this area. (For
the recent development emphasizing size extensivity, see
Ref. [16].)

The above methods all use only one set of spin or
spatial orbitals. We recently performed ab initio calcu-
lations employing another type of multicon®guration
functions, i.e. superposition of nonorthogonal Slater
determinants [17]. In the preliminary results of the
ground-state CO molecule, it has been found that the
method with a few generating Slater determinants can
reproduce the correlation energy to the same extent as
the full valence CASSCF one. Furthermore, the method
is capable of describing long-range behavior of wave
functions better than the MCSCF method, as implied by
the calculated one-electron properties. One can expect
that the allowance of nonorthogonality leads to a wide
variety of methods. The most obvious applications will
be in electron correlation problems and in properties
among states.

In the present article, we propose new multireference
methods based on the superposition of nonorthogonal
Slater determinants. The properties of the reference
wave functions are examined in the following section. In
order to realize a truncated CI expansion, an e�cient
way to evaluate operator matrix elements over nonor-
thogonal excited determinants is proposed in Sect. 3.
Furthermore, we discuss a nonorthogonal CC method
and its aspect as a many electron theory in Sect. 4. We
present results of some applications using the nonor-
thogonal CI and linearized CC methods in Sect. 5.
Conclusions are given in Sect. 6.

2 Superposition of nonorthogonal Slater determinants

Let us consider an N-electron system and look at some
solutions of the SchroÈ dinger equation,

Hwl � Elwl; �l � 1; . . . ;m� ; �1�
which is described by a Hamiltonian involving at most
two-body interactions,

H �
X

pq

hpqX p
q �

1

2

X
pqrs

�pqjrs��X p
q X r

s ÿ dqrX p
s � ; �2�

where the orbital replacement operator is X pq...
rs... �

X�p X�q . . . XsXr. For reference wave functions, we
approximate the exact solutions in terms of the super-
position of Slater determinants,

w�0�l �
XNs

f�1
/� f �c�0�lf ; �3�

where c�0�lf are CI coe�cients of the wave function.
Maximizing the ¯exibility of the approximation, we

assume that each of the N-electron determinants,
f/� f �g� f � 1; . . . ;Ns � m�, consists of spin orbitals
fup� f �g which are not necessarily orthogonal to those
belonging to the other determinants,

/� f �p

��u�g�q

D E
� dpqdfg � upq� f ; g��1ÿ dfg� ; �4�

where upq� f ; g� are overlaps of the nonorthogonal
orbitals. When the CI and the orbital coe�cients are
determined variationally with respect to the ground state
energy,

/� f ���H ÿ E�0�1
��w�0�1D E

� 0; 8 f ; �5�

X a
i � f �/� f �

��H ÿ E�0�1
��w�0�1D E

� 0; 8 a; i; f ; �6�
the method is called the resonating HF approximation
[17], which was recently applied to ab initio MO
calculations. Here the spin-orbital indices a;b; . . . and
i; j; . . . denote virtual and occupied ones in each
determinant, respectively, and the approximate energy
is E�0�l � hw�0�l jH jw�0�l i. Frequently, the variational con-
ditions cannot be satis®ed due to near-singularities of
the reference space, which will be discussed in Sect. 5. A
manifest advantage of allowing the nonorthogonality is
that it enables us to describe systems the main con®g-
urations of which include large hole-particle di�erences
(case 1). It is well known that the instantaneous
repolarization e�ects [18] are not reproduced by the
MCSCF method in which a unique set of MOs is used
for descriptions of all the valence bond (VB) con®gura-
tions. Since the nonorthogonality of determinants is
capable of introducing multideterminant orbital relax-
ation, such a choice of reference functions would
accelerate a CI convergence. Note that the individual
orbital relaxation is long-ranged and thus is totally
nonmultiplyable.

In the CC methods, the orbital relaxation e�ects are
accounted for by inclusions of eT1 . Similarly, it is con-
venient to relate nonorthogonal Slater determinants via
exponential transformations of one-particle operators
in intermediate normalization with respect to each
vacuum,

j/�g�i � exp�Rg� f ��j/� f �iSfg ; �7�

where

Rg� f � �
X

ai

rg;ai� f �X a
i ; �8�

and S denotes the overlap matrix over determinants,

Sfg � h/� f �j/�g�i : �9�
According to the LoÈ wdin formula [19], one can easily see
that the overlap matrix and the amplitudes in the
operator are related to those over spin orbitals belonging
to parent determinants as

Sfg � h/� f �j/�g�i � det�~u� f ; g�� ; �10�
rg;ai� f � �

X
j

uaj� f ; g��~uÿ1� f ; g��ji ; �11�
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where the tilde denotes the occupied portion of the
metric matrix. Note that the nonzero overlap is not a
necessary condition to relate nonorthogonal determi-
nants. It can always be satis®ed by inserting operators
for orbital replacements. In the following section, we will
see that this expression plays a central role in evaluating
matrix elements over excited con®gurations of nonor-
thogonal determinants, which is required in the nonor-
thogonal CI method.

In order to see the ¯exibility of the wave function
more precisely, let us focus on the minimum model
consisting of two nonorthogonal Slater determinants
(2NODs). We summarize the main domains of 2NODs
in Table 1. In case 1, the resonance among structures, for
instance in three-electron bond A��B and AB��, induces
di�erent polarization of electrons below the active level
[18]. Therefore, successive orbital rotations of instanta-
neous repolarization would also be important in addi-
tion to the single-electron excitations. On the other
hand, the orbital relaxation e�ects among structures are
less important in the closed shell molecules. When the
determinants are similar to each other, neglecting the
nonlinear terms in Eq. (7), the total wave function is
approximately expressed by

w�0� � �c�0�1 � S12c
�0�
2 � S12c

�0�
2 R2�1��/�1� ; �12�

(case 2). For pure spin states, the wave function
corresponds to the MCSCF wave function at the
single-electron excitation (SE) CI level, whose orbitals
are generally quite di�erent from the usual SCF or
the natural orbitals (NOs). In Fig. 1, we illustrate the
convergence behaviors of SR-CI expansions using a few
di�erent sets of orbitals; the HF molecule around the
equilibrium geometry is calculated as a representative
closed shell molecule.

The CI expansion improves the correlation energy at
odd-electron excitations when the MCSCF (singles) or-
bitals are used, whereas the expansions with the usual
SCF orbitals or NOs improve it at even-electron exci-
tations. It is apparent that the former set is more ad-
vantageous in the CI including up to triple excitations.
Since the 2NODs function can reproduce the SECI wave
function, we can expect the nonorthogonal CI singles
and doubles to be almost as accurate as the SR-CI up to
triples with the non-HF orbitals (illustrated by arrows).
The method would maintain the scaling property of the
SDCI method if the matrix elements over nonorthogonal
bases were evaluated as e�ciently as orthogonal ones.
We will inspect the possibility in the following section.

On the other hand, the 2NODs function is also capable
of reproducing the generalized valence bond (GVB)
wave function which is, in the NO representation,

w�0� � �c�0�g X�g X�g � c�0�u X�u X�u �/core : �13�

Only in the (single-bond) dissociation limit (case 3) does
the variational solution of 2 NODs become the GVB
wave function since there is no mechanism to further
optimize orbitals of dissociated fragments. Therefore the
theory illustrated in the following sections includes some
MR treatment for dynamic correlation e�ects. When
there is no particle-hole di�erence, the wave function
is a single determinant (case 4). The ¯exibility of the
approximation is in the order, 2NODs > MCSCF
(singles) > GVB>HF. When functions consist of more
than three determinants, several crosses will appear.

3 Matrix element evaluation

Our purpose in this section is to realize CI expansions
based on the wave function in Eq. (3) as a reference,
aimed at not only reproducing dynamic correlation
e�ects but also at optimizing orbitals utilizing the

Table 1. Main cases of two
nonorthogonal HF functionsa,b Case S12 R2�1� jc�0�1 j Correspondence Nc

hÿp Typical system

1 M M M ± Many Odd-electron bond
dissociation

2 ! 1 M !1 MCSCF(singles) 1 Closed shell
3 0 !1 1=

���
2
p

GVB 2(1) Single bond dissociation
4 1 0 ± HF 0 One electron

a Formally expressed by w�0� � �c�0�1 � S12c
�0�
2 �1� R2�1� � R2

2�1�=2� � � ���/�1�
b M means modest magnitudes
c Hole-particle di�erences between determinants. Case 3 is in the natural orbital representation and it is
always possible to reduce the di�erence to 1

Fig. 1. Convergence of the HF molecule energies in the SR CI using
various spatial orbitals. All electrons are correlated. The natural
orbitals (NOs) set is based on the full CI for the space spanned by
the �3s2p=2s� basis functions (Ref. [33])
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Brillouin-type condition in Eq. (6). The CI wave
function based on the superposition of nonorthogonal
Slater determinants is

wl �
X

f

1� C1l� f � � � � � � Cnl� f �
ÿ �

/� f �clf ; �14�

where the state-dependent CI operators are linear
combinations of orbital replacement operators. The
conventional intermediate normalization condition does
not hold in the CI expansion due to the nonorthogo-
nality of the parent determinants with excited ones,
hX ab...

ij... � f �/� f �j/�g�i 6� 0. The CI coe�cients are deter-
mined in a variational way,

h/� f �jH ÿ Eljwli � 0; 8 f ; �15�

X ab...
ij... � f �/� f �jH ÿ El

��wl

D E
� 0; 8 a; b; . . . ; i; j; . . . ;

�16�
imposing orthogonalization constraints among the
states. The projection space includes all the functions
induced by the CI operators with respect to each
determinant.

Solving the equations requires evaluating the energy
and overlap matrix elements. Usually spin-adapted
con®guration state functions (CSFs) are chosen as a
basis, which are linear combinations of determinants.
For diagonal blocks � f � g�, ways to evaluate the
matrix elements are well known for any base [20, 21].
However, the o�-diagonal part is not so simple in
structure since it includes di�erent vacuums in the
quantity. Much e�ort has been devoted to developing
e�cient algorithms for the evaluation, especially in the
classical VB methods. They are, however, essentially on
the basis of the LoÈ wdin formula and concern how to
simplify the calculation of cofactors of the orbital
overlap matrix. The computational task is much greater
than the orthogonal one even if the cofactors can be
evaluated e�ciently. Furthermore, the matrices are not
sparse even for a zero-particle operator (overlaps). This
means we handle much more data than for the orthog-
onal problems.

Corresponding orbitals have been employed for
computing the matrix elements in nonorthogonal CI and
transition moment calculations [22]. In the full CI (CAS)
case, the model is invariant to unitary transformations
of orbitals. Due to the diagonal nature of the corre-
sponding orbital overlaps, two occupations which di�er
by more than N � 1 orbitals do not contribute to an
N -particle matrix between CAS spaces. For general CI
problems, however, nonzero overlaps including external
orbitals signi®cantly increase the computational e�ort.
Since the present purpose is to develop methods in-
cluding large-scale truncated CI expansion based on the
nonorthogonal reference determinants, a more e�cient
algorithm is required.

For a while, we will focus on a certain block of the
matrix elements, whose parents are f 'th and g'th deter-
minants on the bra and ket sides, respectively. We as-
sume that frozen core orbitals are common in the
reference determinants. As we have seen in the previous

section, two di�erent determinants are related via Eq. (7).
We can therefore express the desired matrix elements as,

X ab...
ij... � f �/� f �

��O��X cd...
kl... �g�/�g�

D E
� X ab...

ij... � f �/� f �
��eRg� f �Ô

��X̂ cd...
kl... �g�/� f �

D E
Sfg ; �17�

where the similarity transformed operators are,

Ô � exp�ÿRg� f ��O exp�Rg� f �� ; �18�
X̂ cd...

kl... �g� � exp�ÿRg� f ��X cd...
kl... �g� exp�Rg� f �� : �19�

Since the exponent includes only one-particle operators,
these transformations do not change the particle ranks
of the original operators. This kind of transformation
was recently employed by Koch et al. [23] to reformulate
CCSD equations as e�ective CCD equations in their
direct atomic orbital integral driven approach. Follow-
ing their notation, the transformed Hamiltonian is

Ĥ�
X

pq

ĥpqX p
q � f ��

1

2

X
pqrs

�pq̂jrs��X p
q � f �X r

s � f �ÿdqrX p
s � f �� :

�20�
The hat integrals are modi®ed one- and two-electron
ones corresponding to the transformation,

ĥpq �
X

rs

xprhrsyqs ; �21�

�pq̂jrs� �
X
tuvw

xptyqu�tujvw�xrvysw ; �22�

where

xpq � dpq ÿ
X

ai

rg;ai� f �dpadqi ; �23�

yqp � dpq �
X

ai

rg;ai� f �dpadqi : �24�

It is apparent that the transformed Hamiltonian and
accordingly the modi®ed integral matrices are non-
Hermitian except Rg� f � � 0, exp�Rg� f �� which is non-
unitary. Similarly, the transformed orbital replacement
operator is expressed by

X̂ ab...
ij... �g� �

X
pq...rs

X pq...
rs... � f �ûpaûqb . . . ûsjûri ; �25�

where the e�ective metric is

ûpa �
X

r

xprura� f ; g� ; �26�

ûqi �
X

r

yqruri� f ; g� : �27�

Additional operations left are to relate the bra and ket
parts with the usual CI basis in the corresponding
orthogonal problems. The bra parts are straightfor-
wardly expanded as

hX a
i � f �/� f �j exp�Rg� f �� � hX a

i � f �/� f �j
� rg;ai� f �h/� f �j ; �28�

and
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hX ab
ij � f �/� f �

�� exp�Rg� f �� � hX ab
ij � f �/� f �

��
� �1� pab

ij � rg;ai� f �hX b
j � f �/� f �

��ÿ rg;aj� f �hX b
i � f �/� f �

��h i
� �rg;ai� f �rg;bj� f � ÿ rg;aj� f �rg;bi� f ��h/� f �

�� ;
. . . etc:; �29�
where pab

ij means permutation of �ai� and �bj� indices.
For explicit expressions in the ket part, we rewrite the
excitation operator in a normal product form and its
contractions [24],

X̂ ab...
ij... �g� �

X
pq...rs

ÿ�
X pq...

rs... � f �
	

f :

� �X pq...
rs... � f �

	
f �ûpaûqb . . . ûsjûri ;

�30�

where the brace f gf means normal ordering with
respect to the f 'th determinant as a vacuum, and the
underline symbolizes a sum of all contractions. Taking
account of the fact that each single contraction gives rise
to

wck �
X

i

ûicûik � ÿ
X

a

ûacûak ; �31�

we obtain expressions that are similar to the bra portion
except for successive one-index transformations with the
modi®ed metric,

jX̂ a
i �g�/� f �i �

X
ck

jX̂ c
k � f �/� f �iûcaûki � j/� f �iwai ;

�32�
and��X̂ ab

ij �g�/� f �i �
X
cdkl

��X̂ cd
kl � f �/� f �iûcaûdbûkiûij

� �1� pab
ij �
X

ck

��X̂ c
k � f �/� f �

��ûcaûkiwbj ÿ ûcaûkjwbi�

� ��/� f ���waiwbj ÿ wajwbi� ;
. . . etc:; �33�
The most important conclusion in this paragraph is that
any matrix elements over nonorthogonal determinants
can be derived from those of similarity transformed
operators over orthogonal determinants up to the same
excitation level. This is also true for elements over any
spin-adapted basis derived from nonorthogonal restrict-
ed HF (RHF)-type determinants. When the parent
determinants consist of only doubly occupied orbitals,
the operator Rg� f � can be written in terms of the unitary
group generator, and thus the similarity transformed
Hamiltonian is spin-free as long as the original one is so.
We will mention a simple spin-adaption procedure in
Sect. 5.

In practical computer implementations, operations
including the o�-diagonal block can commonly be
written by

rj� f � �
X

k

hXj� f �/� f �jOjXk�g�/�g�ick�g� ; �34�

where j and k denote sets of hole and particle indices of
replacements. In the CI case, rj� f � and ck�g� corres-

pond to residuals and CI vectors. The bra and ket
transformations can be performed in an indirect way by
e�ectively transforming CI vectors, then multiplying and
transforming residuals,

r0j� f � �
X

k

hXj� f �/� f �jÔjXk� f �/� f �ic0k� f � ; �35�

where r0j� f � and c0k� f � are transformed vectors and
residuals. There is one-to-one correspondence between
the original and transformed quantities in each block
according to the matrix element transformation illustrat-
ed above. This procedure is quite attractive because
a complete mapping of nonorthogonal problems to
orthogonal ones is attained. The amount of data to be
processed is as compact as the usual CI data and thus the
scaling property of the orthogonal problem is main-
tained. Besides the matrix multiplication, it is necessary
to generate preconditioning vectors in the Davidson
scheme [25]. Generally, the Hamiltonian and overlap
matrices are not diagonal dominant in the nonorthogo-
nal basis. Therefore it is preferable to solve linear
equations including energy resolvents explicitly or in an
approximate way using the diagonal part of the matrices
in the corresponding orthogonal basis. These operations
can also be performed e�ciently using Eq. (35).

4 Nonorthogonal CC method

Truncated CI expansions including the nonorthogonal
CI illustrated in the previous section involve size-
inconsistency errors due to a lack of simultaneous
descriptions for correlated events. To resolve this defect,
we need an explicit consideration of the exponential
ansatz on top of approximations. Owing to the present
choice of nonorthogonal reference functions, a resultant
theory should essentially be an IMS one. In the Hilbert
space state-universal approaches as developed by Jezior-
ski and Monkhorst [7], the vacuum-dependent wave
operator is expressed as

XP �
X

f

Xf Pf ; �36�

Xf � eT � f � ; �37�
where Pf denotes a projector of the f 'th Slater determi-
nant spanning the model space. Actually, the form of the
wave operator originates from earlier work by Silver-
stone and Sinanogolu [26]. Meissner and Bartlett
extended the method to a general model-space one
[10], and the CC theories based on the wave operator are
closely related to the MR-MBPT of Hose and Kaldor
[27]. We can follow the ansatz by using a projector in the
nonorthogonal model space,

Pf �
X

g

j/� f �i Sÿ1ÿ �
fgh/�g�j : �38�

Generally, equations necessary for the state-universal
CC methods are obtained, starting with the wave-
operator equation [10],

HXP � XP ~HP ; �39�
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P �
X

f

Pf ; �40�

which is equivalent to a set of SchroÈ dinger equations in
the model space. Equating contributions for each
determinant by multiplying Pf to the right and Xÿ1f to
the left, one obtains

P ~HPf � HXf Pf ÿ �Xÿ1f Xÿ 1�P ~HPf ; �41�
where the bar over HXf denotes all terms obtained by
joining operators. Amplitude equations are obtained
by projecting Eq. (41) with excited determinants whose
parent determinant matches the vacuum. Obviously, it is
not a unique way to determine amplitudes. The state
universality of the wave operator assumes that projec-
tions with excited determinants of distinct vacuums
are automatically satis®ed. Unfortunately, to show the
connectedness property of the equation is not so
straightforward as the usual IMS one, since the reduced
resolvent cannot be de®ned using a single partitioning of
the Hamiltonian. This fact prohibits an order-by-order
expansion of the nonorthogonal cluster operator. Fur-
thermore, all of the members in the model space are
generally not well separated from virtual functions, and
thus the procedure will face an intruder state problem, as
especially in the CMS case.

In the state-selective approaches, there are not many
methods employing the vacuum dependent wave oper-
ator, Eq. (36). Based on the state-universal approach,
MRCC equations were formulated by collecting contri-
butions in Eq. (41) to the residual of a contracted
function [28]. Manifestly, this formulation is not satis-
factory to avoid intruders since the state universality is
embedded in the original framework. We have no
meaningful numerical result in this line except for the use
of approximate expressions which can also be derived
directly from a single-root SchroÈ dinger equation,X

f

�H ÿ E�Xf j/f i~cf � 0 : �42�

Here the ~cf are contraction coe�cients in the model
space, and the root index is ignored. Recently, Meller
et al. [29] proposed an approximate dressing to the
MRSDCI method based on the ansatz [29]. They
showed that the method satis®es a size consistency by
inspecting the separability conditions. More recently,
Mahapatra et al. [30] derived a su�ciency condition of
the SchroÈ dinger equation, which satis®es a connected-
ness in the CMS. However, it is di�cult to show if the
su�ciency condition works in a state-selective manner
avoiding intruder state problems. We shall consider a
more straightforward application of the single-root
SchroÈ dinger equation in this paper. The Pg projection
of the equation is��/g

�
E~cg �

X
f

Pg HXf
��/f

�� vf �HXf ÿ E���/f

�� �
~cf ;

�43�
where vf � Xf ÿ 1. By multiplying qf X

ÿ1
f to the

SchroÈ dinger equation and substituting terms in the

above equation such that all the explicit energy expres-
sion disappears, one yields

qf HXf

��/f

�� qf

X
g6�f

Xÿ1f XgHXg

��/g

�
~cg=~cf ÿ qf

�
X
g 6�f

X
h

Xÿ1f XgPg HXh�vh�HXh ÿ. . .�� �
/h

�
~ch=~cf � 0 ;

�44�
where qf � 1ÿ j/f ih/f j. In order to simplify the
problem, let us consider the CMS limit and assume that
purely internal excitations are not included in the cluster
operator,

qf HXf
��/f

�� qf

X
g 6�f

�
HXg � �Xÿ1f Xg ÿ 1�qgHXg

�
/g

�
~cg=~cf

ÿ qf

X
g 6�f

X
h 6�g

�Xÿ1f Xg ÿ 1�PgHXh
��/hi~ch=~cf � 0 : �45�

We used the fact that the portions including Pgvf or qf Pg
vanish in the limit. The ®rst terms are trivially connect-
ed. For the other terms, the CI coe�cients in the CMS
are related in terms of cluster expansions [30],
~cg=~cf � h/gj exp�sf �j/f i, which is connected via indices
including only valence labels distinguishing determi-
nants. The sf includes all excitations needed to span the
CAS space. The connectedness of sf is most evident in
the ®xed coe�cients case. Therefore, the requirement for
the entire connectedness of the terms is that all of the qf
projections are connected with respect to each interme-
diate vacuum as well as including at least one valence
index distinguishing determinants in the CI coe�cients.
The second term, qf HXgj/gi, satis®es the requirement
and is connected since the terms having no such index
result in null. The third and fourth terms involve
the operator, Xÿ1f Xg ÿ 1, which also appeared in the
state-universal approaches [7, 10]. Using the explicit
expression for the wave operator and the Baker-Camp-
bell-Hausdor� formula,

ln
ÿ
eÿT � f �eT �g�� � T �g� ÿ T � f � � �T �g�; T � f ��=2� � � � ;

�46�
one can see that the operator can be expressed as a
polynomial in T �g� ÿ T � f � and the commutators. In the
Hilbert space MRCC methods, it has been a common
technique to prove connectivity that the operator,
eÿT � f �eT �g� ÿ 1, leads to terms which include at least
one valence index distinguishing determinant, making
use of the property of the commutators and functional
forms of amplitudes. They are also required in the
present formulation. The third term is, however, discon-
nected even if such conditions are satis®ed. For T �g�,
types of cluster operators whose annihilation index
distinguish determinants are not members of T � f �. Thus
they survive and are necessarily connected with the
portion of CI coe�cients. On the other hand, HXg
involves arbitrary types of operators such that nonzero
qf projections are generated without joining T �g�. They
do not cancel with the other diagrams in the third and
the fourth terms, and thus an entire connectivity is not
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obtained a priori from the single-root SchroÈ dinger
equation itself even in the CMS case.

On the positive side, Eq. (44) has the following
properties: (1) it is more straightforward to devise a
formula for complicated model spaces like the present
nonorthogonal one, (2) core extensivity is always satis-
®ed, and (3) resulting energies are size consistent as long
as the references are size consistent. Property 2 is not
carried directly from the connectivity, as seen in the
previous paragraph, but it is apparent that any separa-
tion of core electrons leads to Ns-folded SRCC states.
The system equations become connected and thus core
extensive. Note that the connectivity of the core portion
can be shown only after the fragmentation. It is easy to
show property 3. We can follow an investigation similar
to that in the intermediate Hamiltonianmethods [15, 29].
Consider a super-system, A� B, with its Hamiltonian,
HAB � HA � HB. Spin orbitals can be chosen such that
each of them is localized in one of the fragments. We
assume there are N A

s and NB
s nonorthogonal deter-

minants to describe A and B. Accordingly NA
s � NB

s
determinants arise to describe the entire system that are
anti-symmetrized products of subsystem determinants.
For reference functions, one can see that the secular
equation (5) for the entire system is satis®ed if the CI
coe�cients are written as products of those in the sub-
system equations, cAB

fg � cA
f cB

g . This requirement leads to
a couple of secular equations. Similarly, the Brillouin-
like condition in Eq. (6) is also separable into another
orbital equation and a secular equation. In the CC part,
the contraction coe�cients in Eq. (42) can be obtained
by the model space projections,X

g



/f

���H ÿ E�Xg
��/g

�
~cg � 0; 8 f ; �47�

whose separability can be shown assuming that the wave
operator has a form, XAB

fg � XA
f XB

g , and using the fact
that the operators with di�erent fragment labels com-
mute. As long as the CC equations are solved without
any approximation, it is su�cient to check the qf
projection of the SchroÈ dinger equation to test the
separability of Eq. (44). The multiplication of Xÿ1f just

induces lower classes of equations. The qf projection
separates into a couple of amplitude equations. Since the
subsystem equations include all derivative projections in
the entire equation, any truncation like CCD breaks size
consistency. This also implies the size-inextensive nature
of the single-root SchroÈ dinger equation with the vacu-
um-dependent wave operator.

5 Results

5.1 Computer implementation

We now present some numerical results using the
methods presented in the previous sections. Reference
functions are optimized essentially according to Eqs. (5)
and (6). An explicit second-order procedure includes
terms much more complicated than the usual quadrat-
ically convergent HF method [31]. Fortunately, a super-

CI method generally gives smooth optimizations of the
parameters, starting with distinct determinants. In the
nonorthogonal CI, we solved linear equations without
introducing any diagonal denominators for correction
vectors. Especially around the equilibrium distances, the
conditions in Eqs. (5) and (6) often lead to numerical
problems. Determinants become similar to the others
due to the unimportance of nonlinear Rf �g� products,
and the model space approaches near-singularity. There
are several possibilities to avoid the problem. In this
particular work, we introduce constraints such that
absolute values of the CI coe�cients do not exceed a
threshold,

��c�0�f j � 1. The CI coe�cients are subtracted
according to 1 and the maximum absolute coe�cient.
Although a larger 1 gives a lower energy, numerical
uncertainty increases due to a large cancellation of
contributions from determinants with opposite signs. In
subsequent CI expansions, all the singles and doubles
excitations are included.

The nonorthogonal CC method, Eqs. (44) and (47),
requires evaluations of rather complicated diagrams
which include truncation problems. In order to maxi-
mize the similarity with the CI method, we perform some
approximations to the CC equations. The CI coe�cients
in the reference functions are reoptimized and used as
®xed contraction coe�cients. This can be justi®ed since
the inclusion of all hole-particle excitations is expected
to induce principal internal excitations recovering the
relaxation of coe�cients. Linearizing the amplitudes
equation, one obtains a simple expression,

qf

XNs

g�1
Hÿ T � f �H� �1ÿ P0�HT �g�� �/g

�
c�0�g � 0 ; �48�

which maintains the core extensivity, where P0 ���W�0�ihW�0��� and H � H ÿ E�0�. We also used the fact
that only the projector P0 survives in the amplitude
equation after ®xing the coe�cients and the lineariza-
tion. The term including the projector originates from
the nonorthogonality of the model functions to the
external ones. Manifestly, this expression reduces to the
LCC equation in the SR case �Ns � 1�. All the external
determinants induced by orbital replacements are mul-
tiplied according to vacuum indices of qf . Although the
approximation does not ensure the entire size consisten-
cy explicitly, essential contributions are included in the
energy-independent expression. Equation (48) is not a
unique approximation to the CC method. If the premul-
tiplication of Xÿ1f is ignored in deriving Eq. (44), one
obtains a slightly di�erent equation,

qf

XNs

g�1
H� �1ÿ P0�HT �g�� �/g

�
c�0�g � 0 ; �49�

which is similar to that in the MR linearized CC (MR-
LCC) method [28, 32]. We also use the equation for
comparisons. If the resonating HF conditions, Eqs. (5)
and (6), are satis®ed in the reference function, both
approximations become identical in the single and
doubles (LCCSD). This is similar to the disappearance
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of some linked-disconnected diagrams in the SR-CC
with HF orbitals. In principle, we assume that all the
external determinants are linearly independent. How-
ever, as the magnitude of near-degeneracy correlation
e�ects increases, particular excitations including a few
electrons become important. This fact may cause
redundancies in the cluster operator. Since the approx-
imate equations, (48) and (49), do not include nonlinear
terms of the amplitudes, we also use a linearized energy
expression,XNs

f�1



W�0�

���H ÿ E�T � f �j/f

�
c�0�f � DE ; �50�

such that the resulting energy is invariant to the
redundancy, where DE � E ÿ E�0�. The entire equations
in the LCC and the CI methods are represented in
Goldstone diagrams. For a diagram with L loops, we
replace the spin orbital indices by spatial orbital ones
and multiply a factor 2L to obtain spin free equations
[24]. Extra matrix elements required in the LCC method
can be manipulated with a minor modi®cation of the
corresponding CI expansion.

5.2 Illustrative applications

We apply the above methods to super-systems consisting
of isolated molecules, H2O� nHe �n � 0±2�, using split-
valence basis sets [33, 34] to numerically investigate the
size consistency, which is important to extract pure
interactions of subsystems. Henceforward, RHF-type
2NODs functions with 1 � 1:5 are used as references in

the nonorthogonal methods. In Table 2, energy compo-
nents of the molecules are listed. The full CI of the water
molecule gives rise to 109,857 CSFs in the C2m frame-
work. The numbers of CSFs are 282, 533 and 937 at the
CISD and 11,078, 38,623 and 115,350 at the CISDTQ
for n � 0; 1 and 2, respectively. The 2NODs-CISD
method includes explicitly twice as many con®gurations
as the SR-CISD ones. In the RHF and full CI (FCI),
energies of the super-systems are sums of fragment
energies. Although we approximate the secular equation
in the 2NODs-RHF methods, the relaxation of the CI
coe�cients scarcely a�ects the total energies. The total
wave functions are antisymmetrized products of the
2NODs-RHF function of the water and the RHF
functions of the He atoms owing to the Brillouin-like
condition in Eq. (6). The reference energies are size
consistent explicitly in both cases, the coe�cients ®xed
and relaxed. Similarly, in the 2NODs-LCCSD methods,
the total energies are explicitly sums of the correspond-
ing ones of the water and the LCCSD ones of the He
atoms, the methods being core extensive. ``A'' and ``B''
mean that Eqs. (48) and (49) are used respectively. The
other truncated CI methods including the 2NODs-CISD
are size inconsistent. In Fig. 2, we compare the perfor-
mances of the methods.

The size-inconsistency error in the CISD method is
prominent. The Davidson correction [35], referred to as
CISD+Q, adjusts a large amount of the error. Although
the CISDTQ and the 2NODs-CISD methods are more
accurate, the errors becomes nontrivial as n increases.
The curves of the 2NODs-LCCSD methods are satis-
factorily ¯at. Between methods A and B, there is a
di�erence as large as 0:44 kcal=mol. The di�erence is due
partly to neglecting nonlinear terms.

Table 2. Individual energy components of H2O + nHe (n = 0±2)a

System Method Energy/Eh

He RHF )2.835 680
LCCSD )2.850 625
FCI )2.850 577

H2O RHF )76.009 145
CISD )76.134 914
CISD+Q )76.140 310
CISDTQ )76.141 651
2NODs-RHF )76.072 878
2NODs-RHF(relaxed) )76.072 951
2NODs-CISD )76.140 984
2NODs-LCCSD(A) )76.141 093
2NODs-LCCSD(B) )76.141 789
FCI )76.141 855

H2O + He CISD )78.968 133
CISD+Q )78.988 537
CISDTQ )78.991 378
2NODs-CISD )78.990 991

H2O + 2He CISD )81.816 875
CISD +Q )81.838 889
CISDTQ )81.841 802
2NODs-CISD )81.840 914

a The equilibrium bond distance and the angle of the water mole-
cule are assumed to be 0.95781 AÊ and 104.4776°, respectively

Fig. 2. Size-inconsistency error in calculations of the super-system,
H2O� nHe �n � 0±2�.
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We also calculate a single-bond dissociation of the
HF molecule using the same basis set. For MRCI, full-
valence CASSCF calculations are performed. The 1s
orbitals in ¯uoride are added to the reference space in
the MRCI [36] for fair comparisons. In Table 3, we
compare calculated energies based on the SR, MR and
nonorthogonal methods. All of the SR methods are
based on the RHF references. The variational 2NODs-
CISD is more accurate than the CCSD and MRCI
methods. This agrees with the evaluation in Sect. 2. To
see the performances more closely, we show deviations
from the FCI energies in Fig. 3.

The deviation of the CCSD increases as the nondy-
namic correlation e�ects become important at larger
internuclear distances. Although inclusion of
perturbational triples [37] adjusts the error, the modi®-
cation is too large at 3Re. The MRCI curve is more or
less ¯at, including the same amount of deviation. This is
due mostly to the size-inconsistency error according to
the present choice of the active space. In the 2NODs-

CISD method, the size-inconsistency error is also non-
negligible except at Re. This indicates an alternation of
the reference function from case 2 to case 3, as discussed
in Sect. 2. On the other hand, the LCC methods repro-
duce the entire correlation energies accurately. Both of
the 2NODs-LCCSD methods are always accurate within
0.3% of the correlation energies.

6 Conclusions

We proposed the CI and the CC methods based on the
superposition of nonorthogonal Slater determinants. It
has been shown that the matrix elements over excited
determinants can be e�ciently generated and manipu-
lated by introducing similarity transformed operators
and bracket transformations. The method maintains the
fundamental scaling property of the corresponding
orthogonal problem. In the CC methods, we employ a
multi-exponential wave operator including vacuum
dependencies. The resulting CC method is size consistent
as well as core extensive. In the calculation of the single-
bond dissociation of the HF molecule, the variational
2NODs-CISD method is entirely more accurate than the
SR-CCSD method. Moreover, approximate versions of
the CC, the 2NODs-LCCSD methods, are capable of
reproducing accurate potential energies in comparison
with the conventional SR and MR methods.

Acknowledgements. The author is greatly indebted to D. Mukh-
erjee. He is also grateful to S. Pal for helpful discussions. The
present work is partly supported by the Grant-in Aids for Scienti®c
Research (A) (No. 09304057) from the Ministry of Education,
Science, Sports and Culture, Japan.

References

1. Roos BO (1987) In: Lawley KP (ed) Ab initio methods in
quantum chemistry II. Advances in chemical physics 69. Wiley,
New York, pp 399

2. Cizek J (1966) J Chem Phys 45:4151; (1969) Adv Chem Phys
14:35

Fig. 3. Deviations from the FCI energies for the single-bond
dissociation of the HF molecule

Table 3. Comparison of ener-
gies in the single-bond dissocia-
tion of the HF moleculea,b

a The equilibrium bond distance
is assumed to be 1.733 a.u.
b Energies are in Eh. Numbers in
parentheses are the percentage
of the correlation energies

Method Re 2Re 3Re

RHF )100.021 895 (0.00) )99.815 395 (0.00) )99.687 648 (0.00)
CISD )100.140 831 (95.48) )99.989 956 (90.69) )99.932 832 (86.16)
CISDT )100.141 887 (96.33) )99.994 799 (93.20) )99.949 135 (91.89)
CISDTQ )100.146 252 (99.84) )100.007 273 (99.68) )99.970 946 (99.55)

CCSD )100.144 859 (98.71) )100.001 917 (96.90) )99.960 793 (95.99)
CCSD(T) )100.146 139 (99.75) )100.007 805 (99.96) )99.994 445 (107.81)

CASSCF )100.047 717 (20.73) )99.920 565 (54.64) )99.893 933 (72.49)
MRCI )100.142 822 (97.08) )100.004 568 (98.28) )99.969 651 (99.10)

2NODs-RHF )100.097 271 (60.51) )99.928 804 (58.92) )99.894 218 (72.59)
2NODs-RHF(relaxed) )100.097 352 (60.58) )99.928 859 (58.94) )99.894 219 (72.59)
2NODs-CISD )100.146 079 (99.70) )100.006 361 (99.21) )99.969 707 (99.12)

2NODs-LCCSD(A) )100.146 167 (99.77) )100.007 773 (99.94) )99.971 383 (99.71)
2NODs-LCCSD(B) )100.146 180 (99.78) )100.007 989 (100.05) )99.971 844 (99.87)

FCI )100.146 457 (100.00) )100.007 886 (100.00) )99.972 218 (100.00)

190



3. Barlett RJ (1995) In: Yarkony DR (ed) Modern electronic
structure theory, vol 2. World Scienti®c, Singapore, pp 1047
and references therein

4. Brandow B (1967) Rev Mod Phys 39:771; (1977) Adv Quantum
Chem 10:187

5. Mukherjee D, Moitra RK, Mukhopadhyay A (1975) Mol Phys
30:1961; (1977) Mol Phys 33:955; Haque M, Mukherjee D
(1984) J Chem Phys 80:5058

6. Lindgren I (1978) Int J Quantum Chem Symp 12:33
7. Jeziorski B, Monkhorst HJ (1981) Phys Rev A24:1668
8. Mukherjee D, Pal S (1989) Adv Quantum Chem 20:291
9. Mukherjee D (1986) Chem Phys Lett 125:207; (1986) Int J

Quantum Chem Symp 20:409
10. Meissner L, Kucharski SA, Bartlett RJ (1989) J Chem Phys

91:6187; Meissner L, Bartlett RJ (1990) J Chem Phys 92:561
11. Andersson K, Malmqvist P-AÊ , Roos BO, Sadlej AJ, Wolinski

K (1990) J Phys Chem 94:5483; Andersson K, Malmqvist P-AÊ ,
Roos BO (1992) J Chem Phys 96:1218

12. Hirao K (1992) Chem Phys Lett 190:374; (1992) Chem Phys
Lett 196:397

13. Nakano H (1993) J Chem Phys 99:7983; (1993) Chem Phys Lett
207:372

14. Kozlowski PM, Davisdon ER (1994) Chem Phys Lett 222:615
15. Heully JL, Malrieu J-P, Zaitsevskii A (1996) J Chem Phys

105:6887
16. Mukhopadhyay D, Datta B, Mukherjee D (1992) Chem Phys

Lett 197:236; Datta B, Mukherjee D (1995) Chem Phys Lett
235:31

17. Fukutome H (1988) Prog Theor Phys 80:611; Tomita N,
Ten-no S, Tanimura Y (1996) Chem Phys Lett 263:687

18. Clark T (1988) J Am Chem Soc 110:1672; Ghailane R, Lepetit
M-B, Malrieu J-P (1993) J Phys Chem 97:94; Hiberty PC,
Humbel S, Archirel P (1994) J Phys Chem 98:11697

19. LoÈ wdin PO (1955) Phys Rev 97:1474
20. Pauncz R (1995) The symmetric group in quantum chemistry.

CRC Press, Boca Raton

21. Hinze J (ed) (1981) The unitary group for the evaluation of
electronic energy matrix elements. Springer, Berlin Heidelberg
New York

22. King HF, Stanton RE, Kim J, Wyatt RE, Parr RG (1967) J
Chem Phys 47:1936; Lengs®eld BH III, Jafri JA, Phillips DH,
Bauschlicher CW Jr (1981) J Chem Phys 74:6849

23. Koch H, Christiansen O, Kobayashi R, Jùrgensen P, Helgaker
T (1994) Chem Phys Lett 30:233; Koch H, SaÂ nchez de
MeraÂ s A, Helgaker T, Christiansen O (1996) J Chem Phys
104:4157

24. Paldus J, Cizek J (1975) Adv Quantum Chem 9:105; Lindgren
I, Morrison J (1986) Atomic many-body theory, 2nd edn.
Springer, Berlin Heidelberg New York

25. Davidson ER (1975) J Comp Phys 17:87
26. Silverstone H, Sinanogolu O (1966) J Chem Phys 44:1899, 3608
27. Hose G, Kaldor U (1979) J Phys B12:3827
28. Laidig WD, Bartlett RJ (1984) Chem Phys Lett 104:424
29. Meller J, Malrieu J-P, Caballol R (1996) J Chem Phys

104:4068
30. Mahapatra US, Datta B, Bandyopadhyay B, Mukherjee D,

Adv Quantum Chem (in press)
31. Bacskay GB (1981) Chem Phys 61:385
32. Laidig WD, Saxe P, Bartlett RJ (1987) J Chem Phys 86:887
33. Dunning TH Jr, Hay PJ (1977) In: SchaeferHF III (ed)Methods

of electronic structure theory. Plenum, New York, pp
34. Huzinaga S, Andzelm J, Klobukowski M, Radzio-Andzelm E,

Sakai Y, Tatewaki H (1984) Gaussian basis sets for molecular
calculations. Elsevier, Amsterdam. This set is used for the
isolated He atoms in this work

35. Langho� SR, Davidson ER (1974) Int J Quantum Chem 8:61
36. Werner HJ, Knowles PJ (1988) J Chem Phys 89:5803
37. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M

(1989) Chem Phys Lett 157:479; Raghavachari K, Pople JA,
Head-Gordon M (1989) In: Kaldor U (ed) Many-body
methods in quantum chemistry. Springer, Berlin Heidelberg
New York, pp 215

191


